Thor Energy Th/Pu test (IFA-730): In-pile data from the first irradiation cycle

Presented by C. Vitanza, IFE/Halden

The Halden Reactor - HBWR

- 20 MW heavy water reactor at 34 bar and 235°C
- Height of active core is 80 cm
- Hexagonal array of 300 channels within pressure tank
- Rings 1-6 used for experiments (about 30/110 positions used)
- Experimental channels directly in HBWR (71 mm in diameter)
- 8-10 loops system in operation at any given time (32 to 45 mm in diameter)

Instrumented Test Rigs

Integrity of fuel rods at base irradiation conditions

- Several fuel rods can be tested at the same time, hence enabling to compare different fuel rod variants, such as cladding type, fuel pellet type, pelletcladding gap etc.
- On-line instrumentation provides relevant information on the fuel rod performance, e.g. on PCMI and rod integrity (and also FGR if needed)
- Additional information on other performance aspects can be obtained from PIE (dimensional & corrosion)
- The irradiation is carried out at constant power and can last for a long time (one or more years). After that, one or some of these rods can be subjected to special testing, e.g.

power ramp or even LOCA.

Temperature histories

 Peak fuel temperatures were close to fission gas release threshold temperatures during the 1st and 2nd interlinkage tests.

Rod pressure (fission gas release)

Integral test: Fuel pellet densification and swelling

Integrity of fuel rods in power ramp conditions Assessment of PCI and PCMI margin

Our previous experience: IFA-650

IFA-730.1 Status

- Rig operated since 28.4.2013
 - ~150 operation days so far
 - Power kept at ~30 kW/m for large diam. rods ~20 kW/m for small diam. rods
 - Measured temperature kept below ~1200° C
 - In order to keep long-term operation of the TFs
- Power calibration on 28.4.
 - Good agreement with pre-calculation (±3%)
- Behaviour of Th fuel rods as expected

IFA-730 Test Matrix – Phase 1a

IFA-730.1 Instrument status

- From 29.4. Rod pressure behaviour in UO₂ rod not as expected
 - Early on only weak or no response to power changes
 - Mechanical friction
 - Strong drop on 3.5.
 - After this, the instrument shows reasonable response to power and temperature changes and is likely to show clearly when FGR occurs
- On 3.5. a jump of ~50° C in TF2
 - Signal check showed no indication of failure
 - Subsequently following operation as expected
- Sudden drop in PF5 signal on 3.6.
 - Signal check showed water penetration into the cable
 - Instrument faulty

IFA-730 Test matrix

Rod ID		730-1	730-2	730-3	730-4	730-5	730-6
Fuel		58% U / 42% Th 8% Pu / 92%Th (OMICO pellets)	93% U / 7% Th	58% U / 42% Th 8% Pu / 92%Th (OMICO pellets)	93% U / 7% Th	58% U / 42% Th	UO ₂
Pellet OD	[mm]	5.90	8.48	5.90	8.48	5.90	8.48
Diam. ga	o [µm]	125	150	125	150	125	150
Instr.		TF / EC	TF ¹⁾ / PF	TF / PF	TF / EC	TF / PF ²⁾	TF / PF ³⁾
Power	[kW/m]	20	32	20	30	20	32
Burnup	[MWd/Ox]	6.2	3.9	6.0	3.8	6.1	3.9

¹⁾ Thermocouple TF2 showed a jump on 3.5. – continued working normally.

²⁾ Pressure transducer PF5 faulty since 3.6. – wet cable

³⁾ Pressure transducer PF6 unreliable at the beginning – likely to show FGR

IFA-730 Power levels

IFA-730 Fuel temperature

- Expectation:
 - Temperature in ThU rods lower or similar to reference $UO_2 \rightarrow confirmed$
 - Temperature in PuTh pellets lower than in reference ThU \rightarrow confirmed
- Further irradiation will provide information on long term behaviour

IFA-730 Results: Fuel temperature

- Comparison with model predictions, start-up data: large diameter rods
 - In general good agreement between measured temperature and model predictions
 - Temperature in Th fuel slightly lower than reference UO₂ fuel

IFA-730 Results: Fuel temperature

- Comparison with model predictions, start-up data: small diameter rods
 - In general good agreement between measured temperature and model predictions
 - Temperature in Th/Pu fuel slightly lower than Th/U fuel

IFA-730 Normalised temperature 1/2

IFA-730 Fuel rod pressure

IFA-730 Cladding elongation

IFA-730.1 Summary 1/2

- Rig operated since 28.4.2013
 - Power kept at ~30 kW/m for large diam. rods ~20 kW/m for small diam. rods

Collection of irradiation data on

- Fuel centre temperature
 Fuel thermal conductivity
- Rod pressure Fuel dimensional stability and fission gas release
- Cladding elongation Pellet-cladding mechanical interaction (fuel dimensional stability)
- Continued operation planned at current power levels

IFA-730.1 Summary 2/2

- Data collected so far indicates that Th fuel behaves according to expectation
 - Fuel centre temperatures during first start-up are in fair agreement with model predictions for fresh fuel
 - Temperatures in Th fuel lower or similar to reference UO₂
 - As expected
 - Further irradiation will provide information on long term behaviour
 - Data collected during the further irradiation may provide information about fission gas release behaviour (rod pressure)
- Current data will be analysed more carefully during the upcoming reactor outage

Thermal conductivity of Pu/Th

• C. Cozzo et al. , Journal of Nuclear Materials 416, 135-141, 2011

- K. Bakker, Journal of nuclear materials 250, 1-12, 1997.
- J.H. Yang, Nuclear Technology 147, 113-119, 2004.

Thermal conductivity of U/Th

- K. Bakker, Journal of nuclear materials 250, 1-12, 1997.
- J.H. Yang, Nuclear Technology 147, 113-119, 2004.

IFA-730 Test Matrix – Phase 1a

IFA-730 Test Matrix – Phase 1b

5/29/2014

IFA 730 program, an opportunity for Japan

The test is performing well
 Unique data are being produced and
 Will continue to be produced on Th/Pu fuel
 An international Consortium led by TE is in place

Joining this Consortium will be the most efficient and cost effective way for Japan-nuclear to get access to unique data and to be part of the Thorium future

In-reactor simulation of LOCA Features of the Halden LOCA rig

Appearance of rod cladding after LOCA (Halden test 9) (rod probably broken during test)

- Large balloon at bottom of rod
- Complete circumferential crack
- Hydrogen content near crack ~1600 ppm

Example 6: Tolerable rod overpressure in UO2 and MOX fuel rods

- PWR operation conditions
- Pressure flask surrounded by 12 booster rods
- Gas flow lines
 - Overpressure
 - Hydraulic diameter measurement and gamma-spectroscopy
- Thermocouple (TF) with in-core connector
- Cladding extensometry (EC)

Tolerable Rod Overpressure Tests

Observations

- Rate of temperature increase correlated with overpressure
- Thermal feedback occurs only at considerable overpressure (>100 bar)
- Below this threshold, clad creep-out is sufficiently compensated by fuel swelling, and no net thermal feedback becomes apparent

IFA-730 Normalised temperature 2/2

